
Input-gradient space particle inference for neural network ensembles

Overview

TL;DR: We learn an ensemble of neural networks that 

is diverse with respect to their input gradients.
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Main takeaways

1. Input-gradient-space repulsion can perform better than weight- and function-space repulsion.

2. Better corruption robustness can be achieved by configuring the repulsion kernel using the eigen-decomposition 

of the training data.

Repulsive deep ensembles (RDEs) [1]

• The driving force directs the particles towards high density regions of the 

posterior.

• The repulsion force pushes the particles away from each other to enforce 

diversity.

Description: Train an ensemble             using Wasserstein gradient descent [2], 

which employs a kernelized repulsion term to diversify the particles to cover the 

Bayes posterior

Problem: It is unclear how to define the repulsion term for neural networks:

• weight-space repulsion is ineffective due to overparameterization.

• function-space repulsion often results in underfitting.

Possible advantages:

• Each member is guaranteed to represent a different function;

• The issues of weight- and function-space repulsion are avoided;

• Each member is encouraged to learn different features, which can improve 

robustness.

First-order Repulsive deep ensembles (FoRDEs)

                                            

       

       

    

             
             

                                   
                              

              

 

                                
                                

Defining the input-gradient kernel

Given a base kernel   , we define the kernel in the input-gradient space for a 

minibatch of training samples                                    as follows: 

Compare the input gradients of two particles

with respect to the same input.

Take the average over all 

samples in the mini-batch.

We choose the RBF kernel on a unit sphere as the base kernel    : 

Normalize input gradients to unit 

vectors.

A scalar adaptively adjusted 

to prevent kernel vanishing.

Diagonal matrix containing 

the lengthscales.

Illustrative experiments

For a 1D regression task (above) and a 2D classification task (below), FoRDEs

capture higher uncertainty than baselines in all regions outside of the training data. 

For the 2D classification task, we visualize the entropy of the predictive posteriors.
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Each lengthscale is inversely proportional to the strength of the repulsion force 

in the corresponding input dimension.

Tuning the lengthscales

lengthscale in the   –th dimension 

• Use PCA to get the eigenvalues and eigenvectors of the training data:

• Define the base kernel:

• is a matrix containing the eigenvectors as columns.

• where     is a diagonal matrix containing the eigenvalues.

Proposition: One should apply strong forces in high-variance dimensions 

(more in-between uncertainty) and weak forces in low-variance dimensions 

(less in-between uncertainty).
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Lengthscale tuning experiments
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• Blue lines show accuracies of FoRDEs, while dotted orange lines show accuracies 

of Deep ensembles.

• When moving from the identity lengthscale to the PCA lengthscales :

• FoRDEs exhibit small performance degradations on clean images of CIFAR-100;

• while becomes more robust against the natural corruptions of CIFAR-100-C.

Benchmark comparison
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