MACHINE TEACHING OF ACTIVE SEQUENTIAL LEARNERS

Tomi Peltola, Mustafa Mert Çelikok, Pedram Daee, Samuel Kaski
Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Finland

INTRODUCTION

Machine teaching: Find the best training data that can guide a learning algorithm to a target model with minimal effort.
- Traditionally, the teacher provides data by sampling labels from the true data distribution (consistent teacher).
- Providing true labels can be sub-optimal in finite-horizon tasks for sequential learners that actively choose their queries.

Mean Cumulative Reward

Model of the Learner
- Random draw (baseline)
- Human Teacher - Naive Model
- Planning (P-P; left-side panels)

We address the complementary problem of teaching-aware learning by endowing the learner with a model of the teacher.
- The performance increases markedly when the learner models the teacher.
- The planning teacher (P; Equation 4 or Equation 3) based on the ground truth likelihood. Learner thinks the teacher is:
- Naive
- Planning

Planning

We formulate this sequential teaching problem, as an MDP, and allow the teacher to provide data inconsistent with the true distribution ("With teacher" panel on the right).
- We address the complementary problem of teaching-aware learning by endowing the learner with a model of the teacher.
- The final inference problem reduces to inverse reinforcement learning.

Teacher Models
- Naive:
 - $p_{\text{M}}(a_t | i, \pi) = \text{Bernoulli}(a_t | \pi_i)$
- Planning:
 - $p_{\text{M}}(a_t | i, M_t, w) = \exp \left(\sum_{k} \exp \left(R_{M_k}(a_t, w') \right) \right)$
- Mixture:
 - $p_{\text{M}}(a_t | i, M_t, w, \pi, \alpha) = \alpha p_{\text{M}}(a_t | i, M_t, w) + (1-\alpha) p_{\text{M}}(a_t | i, \pi_i)$

EXPERIMENTS

Setup:
- Word search study: the teacher selects a target word and the learner tries to guess the word by asking sequential questions.
- Learner: "Is this word relevant to the target?", Teacher: Yes/No

Results with Human Teachers:
- Participants ($\alpha = 1$) achieved noticeably higher rewards while interacting with a learner having the mixture teacher model (red), compared to the naive teacher model (blue).

Results with Simulated Teachers:
- The planning teacher can steer a teacher-unaware learner to achieve a marked increase in performance compared to a naive teacher (P-N vs N-N; left-side panels)
- The performance increases markedly when the learner models the planning teacher (P-P; left-side panels)

CONCLUSION

- We have introduced a new sequential machine teaching problem, where the learner actively chooses queries (e.g., in active learners and multi-armed bandits) and the teacher provides responses. The new teaching problem is formulated as a Markov decision process, where the solution provides the optimal teaching policy. Using the MDP formulation, teacher-aware learning from the teacher’s responses is formulated as probabilistic inverse reinforcement learning.
- The proposed teaching framework holds promise for a feasible and natural computational approach in modelling active user behaviour in interactive intelligent systems.

See the paper website for more info and the code: https://git.io/JeSaU