MACHINE TEACHING OF ACTIVE **SEQUENTIAL LEARNERS**

Aalto University

Tomi Peltola, Mustafa Mert Çelikok, Pedram Daee, Samuel Kaski

Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Finland firstname.lastname@aalto.fi

TL;DR: • PROBLEM: HOW TO STEER AN ACTIVE MACHINE LEARNER THAT QUERIES LABELS SEQUENTIALLY?

- SOLUTION: FORMULATE THE TEACHING PROBLEM AS AN MDP, WITH LABEL CHOICE AS ACTION.
- RESULT: A TEACHER TEACHING WITH INCONSISTENT LABELS CAN BEAT CONSISTENT LABELS.
- FURTHER: ENDOW THE LEARNER WITH A MODEL OF THE TEACHER.
- APPLICATION: MODELLING STRATEGIC USER BEHAVIOUR IN INTERACTIVE INTELLIGENT SYSTEMS.

INTRODUCTION

Machine teaching: Find the best training data that can guide a learning algorithm to a target model with minimal effort. • Traditionally, the teacher provides data by sampling labels from the true data distribution (consistent teacher). • Providing true labels can be sub-optimal in finite-horizon tasks for sequential learners that actively choose their queries. Contributions

Full data pool and fit With teacher Without teacher X

- We formulate this sequential teaching problem, as an MDP, and allow the teacher to provide data inconsistent with the true distribution ("With teacher" panel on the right).
- We address the complementary problem of teaching-aware learning by endowing the learner with a model of the teacher. The final inference problem reduces to inverse reinforcement learning.
- We evaluate the formulation with multi-armed bandit learners in simulated experiments and a user study.

The approach gives tools to taking into account strategic (planning) behaviour of the users in interactive intelligent systems, such as recommendation engines.

Common goal of the learner and teacher: Learn (teach) the best possible model of the true data distribution. Learner model:

- Bayesian Bernoulli bandit with linearly dependent arms. Reward probabilities are modelled as $\pi_i = \sigma(\mathbf{x}_i^{\mathrm{T}} \mathbf{w})$, where \mathbf{w} is the linear model parameter. Thompson sampling for exploration-exploitation trade-off.
- **Simulated Teacher and Teacher models:**

• Teacher models (naive, planning, mixture) interpret the teacher's actions (likelihood for w). Planning teacher thinks the learner is using the naive likelihood. Learner thinks the teacher is: naive, planning, or mixture.

Example of teaching effect on pool-based logistic regression active learner. Starting from blue data,

- the learner without teacher, fails to sample useful points from the pool.
- planning teacher helps the learner by switching some labels (red points).

Naive:

 $p_{\mathcal{B}}(a_t \mid i_t, \boldsymbol{\pi}) = \text{Bernoulli}(a_t \mid \pi_{i_t})$

Planning:

Mixture:

 $p_{\mathcal{M}/\mathcal{B}}(a_t \mid i_t, \mathcal{M}_t, \boldsymbol{w}, \boldsymbol{\pi}, \alpha) = \alpha p_{\mathcal{M}}(a_t \mid i_t, \mathcal{M}_t, \boldsymbol{w}) + (1 - \alpha) p_{\mathcal{B}}(a_t \mid \pi_{i_t})$

EXPERIMENTS

Setup:

• Word search study: the teacher selects a target word and the learner tries to guess the word by asking sequential questions.

• Learner: "Is this word relevant to the target?", Teacher: Yes/No

Results with Simulated Teachers:

• The planning teacher can steer a teacher-unaware learner to achieve a marked increase in performance compared to a naive teacher (P-N vs N-N; left-side panels)

Results with Human Teachers:

• Participants (n = 10) achieved noticeably higher rewards while interacting with a learner having the mixture teacher model (red), compared to the naive teacher model (blue).

CONCLUSION

• We have introduced a new sequential machine teaching problem, where the learner actively chooses queries (e.g., in active learners and multi-armed bandits) and the teacher provides responses. The new teaching problem is formulated as a Markov decision process, where the solution provides the optimal teaching policy. Using the MDP formulation, teacher-aware learning from the teacher's responses is formulated as probabilistic inverse reinforcement learning.

• The proposed teaching framework holds promise for a feasible and natural computational approach in modelling active user behaviour in interactive intelligent systems.

See the paper website for more info and the code: https://git.io/JeSaU.